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'   SEDIMENT TRANSPORT IN THE WESTERN INTERIOR SEAWAY OF NORTH 
AMERICA: PREDICTIONS FROM A CLIMATE-OCEAN-SEDIMENT MODEL 

RUDY SLINGERLAND 
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802 U.S.A. 

AND 

TIMOTHY R. KEEN 
Naval Research Laboratory, Oceanography Division, Stennis Space Center, Mississippi 39529 U.S.A. 

ABSTRACT: Whether from the foreshore, shoreface, shelf, or incised estuarine valleys, sedimentary deposits along the western edge of the 
Western Interior seaway quite uniformly record southerly directed paleoflows. Cardium Formation shoreface gravels at Willesden Green, 
Alberta, decrease in clast size to the southeast. Isoliths outlining clastic wedges, such as the Chalk Creek, are recurved to the south. Large-scale 
cross-strata in rocks considered to be either shelf sand ridges or detached shorefaces, such as the Kakwa and Musreau Members of the Cardium 
Formation and the Straight Cliffs Formation of southwestern Utah, indicate southerly directed paleocurrents. Estuarine incised valley-fills 
trend south or southeast, reflecting a high-stand shelf topography inherited by rivers as they cut across the inner shelf in response to a high- 
order sea-level drop. To explain this uniformity we conducted two numerical experiments that predict circulation and sediment transport 
paths in the seaway in response to 1) mean annual atmospheric forcing and 2) the passage of a mid-latitude winter storm. The mean annual 
forcing for the early Turonian is computed by GENESIS, an NCAR global climate model; the cyclone is computed using an idealized hurricane 
model. For the mean annual experiment, circulation of the seaway is computed using a three-dimensional, turbulent flow, coastal ocean model 
under the following initial and boundary conditions: 1) paleobathymetry according to a new interpretation of the litho- and bio-stratigraphy 
for the early Turonian; 2) fresh water runoff and precipitation-evaporation magnitudes as computed by GENESIS; 3) temperatures and 
salinities of the Boreal and Tethys Oceans based on GENESIS atmospheric temperatures; and 4) mean annual and daily wind stresses computed 
by GENESIS. For the storm experiment, circulation is forced solely by wind stresses. 

Results show that these boundary conditions combine to produce a basin-wide counterclockwise gyre that arises from Coriolis acceleration 
acting on runoff jets trapped along the coast, abetted by latitudinal temperature and salinity gradients and a north-south, wind shear-couple. 
Individual storm events reverse the general circulation locally, but summed over a storm's duration, the storm-driven fluid and sediment 
transport augments the mean-annual transport of the gyre. Thus, net sediment transport directions along the western margin of the seaway, 
both on the shelf and in the wave-driven littoral zone, were southerly because the mean annual wind field, latitudinal temperature gradient, 
and fresh water runoff from land created a background circulation consisting of southerly geostrophic flow there. In addition, counterclock- 
wise rotating, mid-latitude cyclonic storms passing southeastward over the central seaway drove a net southerly littoral drift in the foreshore 
and shore-parallel geostrophic flows whose net sediment transport was southerly. Along the eastern margin the computed shelf and littoral 
transport was to the north. 

INTRODUCTION 

The origin of isolated shallow-marine sandbodies is 
unknown, and nowhere is answering this question more 
vexing than along the western margin of the Cretaceous 
interior seaway. Examples there include the Shannon Sand- 
stone (Spearing, 1976; Seeling, 1978; Shurr, 1984; Swift and 
Rice, 1984; Gaynor and Swift, 1988; Tillman and Martinsen, 
1984, 1987; Walker and Bergman, 1993; Bergman, 1994), 
Eagle Sandstone (Rice, 1976, 1980; Rice and Shurr, 1983; 
this volume), Tocito Sandstone, (Snedden and Nummedal, 
1990; Nummedal and Riley, 1991; Valasek, 1995; Jennette 
and Jones, 1995), and Viking Formation (Evans, 1970; Hein 
etal.,1986; Leckie, 1986; Raddysh, 1988; Power, 1988; Down- 
ing and Walker, 1988; Posamentier and Chamberlain, 1993; 
Walker, 1995; Walker and Wiseman, 1995), all of which 
have been variously interpreted as offshore sand ridges, 
incised estuarine valley fills, or incised shoreface deposits. 
In each case, sedimentological paleoflow indicators, such 
as the type, scale, and orientation of bedforms and sedi- 
ment textures, have played an important role in the inter- 
pretation. Whether these sedimentological indicators can 
be used to differentiate among the different interpretations 
depends on what bedforms, textures, and transport direc- 
tions we expect along the western margin of the seaway in 
these various depositional settings. These expectations are 
usually derived from modern analogs (e.g., Part 2, this 
volume), but this is always risky because argument by 
analogy only succeeds if all other factors forcing circulation 

in the modern and ancient basins, such as the regional 
climate, are similar. 

The purpose of this paper is to provide an alternative basis 
for interpreting paleoflow indicators and sedimentary tex- 
tures observed in coastal and shelf sediments of the Western 
Interior seaway. Here we deduce the expected circulation and 
sediment transport paths in the seaway from first principles 
using a climate/ocean/sedimentation model. Admittedly, 
this method too has its pitfalls. While based on the conserva- 
tion laws, climate/ocean/sedimentation models parameter- 
ize some important processes and by computational necessity 
must be run at coarse resolution. More importantly, the 
accuracy of the results is strongly dependent upon the initial 
conditions and the boundary conditions. Nevertheless, given 
our present best estimates of the seaway's paleogeography, 
paleobathymetry, and paleoclimate, these computations 
should provide the best estimate to date of the seaway's 
circulation and sediment transport because they constrain the 
complex sedimentary processes using fundamental principles 
of mass, energy, and momentum conservation. 

Early conjectures on the circulation of the seaway relied 
upon intuition and analogy with modern oceans (see Parrish, 
Gaynor, and Swift, 1984; or Hay, Eicher, and Diner, 1993). 
Attempts to compute the circulation of the seaway from first 
principles started with Parrish et al. (1984), who computed 
the wind-driven circulation in present-day Colorado and 
Wyoming. Slater (1985) calculated the independent tides of 
the seaway using a primitive equation model and concluded 
that the tides were microtidal everywhere. Subsequent calcu- 

Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation. 
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lations of the co-oscillating tides by Ericksen and Slingerland 
(1990) suggested that they were larger but still microtidal, 
with the exception of the southeastern coast. Ericksen and 
Slingerland also computed the wind-driven circulation of the 
entire seaway in response to mean annual winds and a mid- 
latitude extratropical storm. More recent circulation hindcasts 
(Slingerland et al., 1996; Jewell, 1996) have included thermo- 
haline forcing as well as mean annual winds. None of these 
studies has attempted to compute sediment transport in the 
seaway. 

Here we present results from the first climate/ocean/ 
sedimentation computations for the seaway. They show that 
the net sediment transport direction along the western mar- 
gin of the seaway in offshore sand ridges, incised estuarine 
valley fills, and incised shoreface deposits should have been 
to the south. These predictions are consistent with paleoflow 
observations there, which indicate a spatially and temporally 
uniform net sediment transport to the south. 

METHODOLOGY 

To calculate the sediment transport rates and directions in 
the Western Interior seaway, one must compute the expected 
atmospheric forcing and resulting wind-driven and thermo- 
haline flows, as well as oscillatory currents associated with 
surface waves. The steady and oscillatory currents must then 
be combined using an appropriate bottom boundary layer 
model (BBLM) to compute bottom shear stresses. Given the 
history of bed stresses, sediment transport rates and direc- 
tions must then be calculated using a sediment transport and 
bed conservation model. Two cases are presented: Case I) 
sediment transport due to mean annual thermohaline and 
wind-driven circulation, and Case II) sediment transport 
during an 8-day storm. 

Sediment Transport Due to Thermohaline 
and Wind-driven Circulation 

Atmospheric forcing for this case comes from the climate 
for the early Turonian as computed by GENESIS, a global 
climate model developed by Pollard and Thompson (1992) at 
the National Center for Atmospheric Research and reported 
in earlier studies by Barron, Fawcett, Pollard, and Thompson 
(1993) and Slingerland et al. (1996). GENESIS consists of an 
atmospheric general circulation model (AGCM) coupled to 
surface models of soil, snow, sea-ice and a slab ocean, and 
includes a Land-Surface-Transfer Model that computes near- 
surface fluxes of heat, moisture, and momentum in the pres- 
ence of vegetation. The AGCM is an extensively modified 
version of the National Center for Atmospheric Research 
Community Climate Model version 1 (CCM1). Each of the 
seasonal cycle experiments is executed for 12 years to bring 
the model into dynamic equilibrium; values of atmospheric 
variables for the subsequent three years are stored for later 
analysis. These experiments are based on the continental 
paleogeography and topography of Barron (1987) with atmo- 
spheric C02 concentrations four times the present day value. 

The wind-driven and thermohaline circulation of the 
seaway for the mean annual case is taken from Slingerland et 
al. (1996), who calculated it using CIRC, a coastal ocean model 
derived by Leendertse (Leendertse and Liu, 1977; Keen and 
Slingerland, 1993). Shoreline positions and depth contours 
were based on the relationships between lithofacies and 
depths observed in modern marine settings, and supported 
by biofacies data from selected sites within the basin (see 
Slingerland et al., 1996, for a discussion). Precipitation or 

evaporation over the seaway in that study was simulated by 
adding or subtracting fresh water from the upper layer of the 
seaway in proportion to the net precipitation hindcast by 
GENESIS. Fresh-water runoff from the adjacent continent 
entered the model seaway through 18 rivers spaced roughly 
every 4° latitude along the seaway's eastern and western 
shorelines. River discharges into the seaway were set equal to 
the precipitation minus evaporation for each river's drainage 
basin. Surface shear stresses arising from the mean annual 
wind field were applied to each wet node in CIRC. Output of 
the model consisted of U, V, and W velocities, temperature, 
salinity, and water surface elevations. After 7 years of spin- 
up, the model system approached dynamic equilibrium. At 
that point the mass of water entering the seaway through 
precipitation, runoff, and counterflow at the entrances was 
balanced by the mass leaving by evaporation and surface 
flows to the world ocean. 

Because the resulting circulation is relatively weak, we do 
not compute the surface wave field, bottom bed stresses, and 
bed conservation for this case. Instead we qualitatively dis- 
cuss the implications for fine-grained sediment transport. 

Sediment Transport During an 8-Day Storm 

The experiment that simulated sediment transport dur- 
ing the passage of a storm over the seaway was forced by an 
ideal, extratropical winter cyclone. We defined an average 
storm track across the seaway using the standard deviation of 
the geopotential height field as computed by GENESIS 
(Ericksen and Slingerland, 1990). Along the track we passed 
an ideal cyclone using the cyclone model discussed in Keen 
and Slingerland (1993). The forward storm speed is 10 m/s, 
the pressure difference is 53 mm of mercury, and the maxi- 
mum radius is 1000 km. The simulation starts at day zero 
when the storm center is northwest of the seaway and ends 8 
days later after it has passed to the southeast. 

The resulting wind-driven circulation in the seaway was 
computed using the Princeton Ocean Model (POM) (Blumberg 
and Mellor, 1987; Mellor, 1993; for its previous application to 
the Western Interior seaway, see Jewell, 1996). POM is a 
primitive equation ocean model that uses a free surface and 
sigma coordinate system. Vertical mixing is computed using 
the turbulence closure sub-model of Mellor and Yamada 
(1982). The model grid consists of 112 x 260 nodes in the 
horizontal, spaced 30 km apart, and 11 sigma coordinates; 
model external time-step is 100 seconds. POM is initialized 
from an experiment in which the circulation was driven 
solely by mean annual winds as computed by GENESIS. The 
northern and southern open boundaries of the basin are 
treated using a radiation boundary condition with water 
surface elevations relaxed to interior values. 

The bathymetry and boundary geography for Case II are 
given in Figure 1. Minimum water depth is 10 m; maximum 
is 950 m. Sediment in the seaway consists of two types. In 
water depths shallower than 30 m the bed consists of five size 
classes of very fine sand with a mean grain size of 2.5 <)) and a 
standard deviation equal to 1 <]). In waters deeper than 30 m 
the bed consists of 5 size classes with a mean size of 7.5 $ and 
a standard deviation of 2 <j>. 

Storm waves are computed from the wind field using the 
forecasting equations for fetch-limited conditions (Corps of 
Engineers, 1984): 

(EQ1) Hs= 5.112x10^ Ua^f 
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Fig. 1.—Paleobathymetric map of the Early Turonian W. coloradoense Biozone in the western interior basin (redrawn from 
Sageman and Arthur, 1994). In one numerical experiment an idealized extra-tropical cyclone passes from west to east along 
the solid line. Solid squares represent location of storm eye at a) 2.17, b) 4.14, and c) 6.13 days after the start of computations. 
Wind speed magnitudes indicated by arrow at bottom right. 

rm=6.238xlO-2VfU (EQ2) 

where Hs= significant wave height (m); Ua = adjusted wind 
speed (m/s), given by: 

U =0.7 If/ 1.23 (EQ3) 

where U = wind speed (m/s) at 10 m above the water surface, 
f = fetch (m), and Tm = period (s) of the peak of the wave 
spectrum. The wave propagation direction is set equal to the 
wind direction. Wave height and period are then used to 
compute the wave orbital amplitude and speed in the wave 
bottom boundary layer using linear wave theory. 

Suspended sediment profiles are computed using the 
Glenn and Grant (1987) suspended-sediment, stratified 
BBLM with modifications discussed by Keen and Glenn 
(1994). The unidirectional current driving the BBLM is taken 
from POM's lowest layer. The bottom roughness is com- 
puted by the BBLM and is dependent on sediment charac- 
teristics as well as the combined wave-current flow. An 
active layer is defined as the height of ripples plus the 
thickness of the near-bed sediment transport layer (Grant 
and Madsen, 1982). This layer represents interactions be- 
tween the bed and the flow during a model time step. 
Sediment resuspension and erosion cannot exceed the ac- 
tive layer depth, thereby greatly reducing the erosion of fine 
material reported previously (e.g., Keen and Slingerland, 
1993). Suspended sediment transport rates are computed 

from the sediment and current profiles computed by the 
BBLM at each point. A bed conservation equation is solved 
at each model grid point to calculate regions of erosion or 
deposition for each sediment size. 

RESULTS 

Case I: Mean Annual Circulation and Sediment Transport 

As reported in Slingerland et al. (1996), the steady-state 
surface circulation of the seaway (Fig. 2) consists of a basin- 
scale counterclockwise gyre. This flow extends to the bed in 
all water depths less than about 100 m. On the eastern shelf 
currents flow to the north; on the western shelf currents flow 
to the south. Surface currents are on the order of a few 
centimeters per second. Below 100 m, waters collect in the 
core of the seaway through weak caballing and flow along its 
thalweg, exiting to the north and south. 

This simple estuarine circulation owes its existence to a 
relatively complex forcing. Sensitivity studies in which the 
circulation was computed independently for each forcing 
factor indicate that the density and wind-driven flows are 
additive, with the thermohaline forcing being the strongest. 
Fresh and therefore buoyant river water enters the seaway 
from its eastern and western margins and creates offshore- 
dipping water-surface slopes, down which this buoyant wa- 
ter subsequently flows. In the process it is deflected to the 
right by the Coriolis force and piles up along each coast, until 
the offshore pressure force arising from the surface slope just 
balances the Coriolis force. This water then moves along 
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Fig. 2.—Mean annual steady-state circulation in top 10 meters of water column as hindcast by a coastal ocean model subject to 
atmospheric forcing computed by a global climate model (from Slingerland et al, 1996). Dash line represents paleogeography 
of North America seen by GENESIS. Circulation in the seaway consists of a large cyclonic gyre. 

isobaths as geostrophically confined jets, avoiding the center 
of the seaway. 

The shear couple arising from the coastal jets, and water 
surface slopes arising from contraction of the water column as 
it densifies toward the basin center, draw Boreal and Tethyan 
surface waters into the seaway where they mix as they shear 
past one another. The mixed waters, being denser than either 
component, downwell, split into two flows, and return to the 
global ocean, with 60% of the flux into the Boreal Ocean. 

No sediment transport was computed for the mean an- 
nual circulation in Slingerland et al. (1996). We can conjecture 
however, that during fair weather this background circula- 
tion would advect suspended sediment delivered to the shelf 
by river plumes, much as muds of the Amazon are carried 
north along the Guiana coast by the Guiana Current. Conse- 
quently, fair weather, fine-grained sediment transport in the 
seaway should follow the trajectories shown in Figure 2. 

This isn't the whole story of course, because sediment 
transport rates are proportional to a high power of flow 
velocity. Consequently, the bulk of sediment transport on the 
shelf, shoreface, and in the nearshore of the seaway must have 

occurred during storms, much as occurs on today's con- 
tinental shelves (Swift et al., 1979; Madsen et al., 1993; Vincent, 
Young, Swift, 1983; Wright, Xu, and Madsen, 1994; Green et 
al., 1995). 

Case II: Storm-driven Circulation and Sediment Transport 

Superimposed on the mean annual circulation of the 
seaway must have been the stronger but shorter duration 
flows caused by storms. If modem shelves are the key to the 
past, then these flows consisted of two parts, an oscillatory 
component due to water surface waves and a wind and 
pressure gradient-driven, quasi-steady component. As dis- 
cussed above, the time integral of these two components 
determines the net sediment transport magnitude and direc- 
tion. 

Here the time integral is computed during a model 
storm's transit across the seaway. Initially, the storm eye is 
located over the Sevier Highlands (Fig. 1) and weaker winds 
at the front of the storm blow predominantly to the north, 
parallel to shore. By day 2 (Fig. 1, location a), winds blow 
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predominantly offshore along the U.S. portion of the sea- 
way and onshore in northern Alberta. Bottom currents 
computed by POM at this time are northerly and onshore 
(Fig. 3a) along the Canadian portion of the seaway's west 
coast. This pattern arises because of geostrophy and because 
the water motion reflects the history of wind stresses. As the 
wind stress accelerates surface waters downwind (north- 
ward), a cross-stream Coriolis force is created that deflects 
the surface waters to the right (offshore). Sea levels fall along 
the coast until a cross-shelf water surface slope creates a 
shoreward-directed pressure force of sufficient magnitude 
to balance the Coriolis force. Bottom waters, being loosely 
decoupled from the wind stress, sense the water surface 
slope and flow down it. Thus, their net motion is northward 
and shoreward. 

The wind sea (shown for day 4 in Fig. 4) consists of 
asymmetric distributions of wave heights and periods that 
decrease away from the storm center. Higher values occur to 
the south due to the higher winds there (c.f., Fig. 1 and Fig. 2). 
This pattern is translated self-similarly as the storm eye 
advances, and therefore the wind sea on day 2 can be recon- 
structed by recentering the distributions shown in Figure 4 on 
site a. The direction of wave advance is assumed to be 
coparallel with the local wind vectors. 

As noted above, early in the storm's transit, winds blow 
predominantly alongshore to the north. The wind sea then 
should consist of waves between zero and 6 m high with 
periods of less than 9 s approaching the coast from the south. 
These waves should create a littoral drift to the north. South 
of the storm track strong winds blow offshore, creating a 
wave field that propagates offshore at a right angle to the 
wind-driven currents. 

The nonlinear interaction between the quasi-steady and 
oscillatory currents in the bottom boundary layer creates the 
bed stress that entrains and transports sediment. The mag- 
nitude of the bed stress as computed in the BBLM is not only 
a function of the magnitudes of the waves and currents but 
also of water depth—because bottom wave orbital param- 
eters vary with location in the water column—and sediment 
type—because turbulence damping due to suspended sedi- 
ment and friction due to bedforms varies with grain size. 
Regions of significant bed stress on day 2 (Fig. 5a) are 
restricted to two regions shallower than 30 m: a region 
spanning about 10° latitude immediately south of the storm 
track and a much smaller region to the north. These are 
regions of both significant waves and wind-driven currents. 
Sediment in transport moves northward and shoreward at 
this time (Fig. 3). 

By day 4, the storm has progressed to the center of the 
seaway (Fig. 1) such that winds are predominantly north- 
directed on the east coast and south-directed on the west coast. 
In response to this evolving wind field, the storm currents are 
significantly intensified and reoriented (Fig. 3b). A vast region 
of the western shelf from the U.S.-Canadian border to southern 
Colorado is swept by currents that average 0.5 m/s. In waters 
shallower than about 100 m, the currents are roughly coast 
parallel and southerly with a small offshore component. North 

Fig. 3.—Bottom currents as computed by POM at 5 m above 
the bed after: a) 2.17 days of simulation when the strongest 
winds are restricted to the western margin of the basin; b) 
4.14 days when the storm is in the center of the basin; and 
c) 6.13 days as the storm approaches the eastern margin. 
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Fig. 4.—Wind sea at day 4.14. a) Significant wave heights (m) 
as computed by Equation 1 (1 m contour interval). Val- 
ues range from 0 to 12 m, with highest wave heights 
occurring on south side of storm where winds speeds are 
highest. Wave direction and consequently orientation of 
oscillatory stroke are assumed to follow local wind vec- 
tors (Fig. 1); b) Significant wave periods (seconds) com- 
puted by Equation 2 (2 second contour interval). 
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of the border the shelf currents diminish and turn north. 
Currents on the east coast are still weak. The currents flow 
onshore in the north and offshore in the south in deeper waters. 
These bottom currents are isobathyal geostrophic currents, 
similar to currents on the east coast of the United States during 
a nor'easter (Lee et al., 1985). 

Along the western shelf in the region of strong bottom 
flow, the wind sea (Fig. 4) increases in height and period from 
5 m and 11 second waves in the north to a maximum of 12 m, 
15 second waves in the south. As expected, this combination 
of currents and waves leads to a region of high bed-shear 
stress (Fig. 5b) centered on the Montana-Wyoming promon- 
tory. Along the east coast an extensive region of shallow 
water experiences modest shear stresses, mainly due to the 
wind sea. 

By day 6 the storm eye has passed over the eastern coast 
(Fig. 1). Consequently winds blow predominantly to the 
south along the eastern shelf. Bottom currents (Fig. 3c) now 
comprise a melange of forced and relaxation flows. Bottom 
currents along the western shelf are primarily driven by a 
barotropic Kelvin wave propagating counterclockwise along 
the western shelf. Bottom currents along the eastern shelf are 
a result of downwelling associated with coastal setup and 
relaxation flows as the wind stress decreases. The wind sea is 
now confined to the eastern shelf. Although wind-driven 
flows are still relatively strong on the western shelf, signifi- 
cant bottom shear stresses (Fig. 5c) are principally confined to 
shallow waters of the eastern shelf, reflecting the importance 
of the storm waves there. 

The net sediment transport arising from this complicated 
history of bed-shear stress magnitudes and directions is 
given in Figure 6. In this plot, the direction of sediment 
transport has been taken into account in integrating the 
sediment flux so that if sediment at a site first moves north 
and then south at the same rate and for the same duration, 
then the net transport rate at the site will be zero. The net 
sediment transport direction on the western shelf is roughly 
isobathyal to the south. Highest magnitudes occur on the 
Montana-Wyoming promontory, where sediment is trans- 
ported in water depths of up to 100 m. On the eastern shelf, net 
transport is to the north with lower magnitudes. The small 
magnitude arises partly because southerly transport during 
the latter stages of the storm's passage cancel northerly 
transport earlier in the storm's transit. 

The bulk of the material transported is sand from the inner 
shelf, where the greatest shear stresses are calculated. Lim- 
ited transport occurs offshore because the shear stresses are 
weaker there and the active layer is quite thin. 

Two storm beds remain after the storm passes, one on the 
western shelf and one on the eastern shelf (Fig. 7). Both span 

Fig. 5.—Dark patches denote regions of significant wave- 
current shear velocities (U, > 1 cm/s) computed from 
the benthic boundary layer model, (a) High shear veloci- 
ties occur along the western margin as the storm enters 
the seaway, (b) High shear velocities occur on both the 
western and eastern shelves as the storm crosses mid- 
way, (c) High shear velocities are limited to the eastern 
margin. Maximum shear velocities remained at about 8 
cm/s throughout the storm's passage but changed loca- 
tion. For reference, bed shear stress is proportional to 
U2.   . 

about 15° of latitude and are confined to waters shallower 
than 100 m. Thickness ranges from a seaward feather-edge to 
54 cm in about 20 m of water. The bed consists predominantly 
of very fine sand. 

In summary, although the quasi-steady and oscillatory 
currents arising from the passage of an extratropical storm 
are multidirectional, the computed net sediment transport 
on the western margin of the seaway is southerly, reinforc- 
ing finer-grained sediment transport to the south due to the 
mean annual circulation. Consequently, we also expect the 
observed paleoflow indicators and sedimentary textures 
from foreshore, shoreface, and offshore settings in the re- 
gion of the Cretaceous storm track to record this southward 
transport. 

EVIDENCE FOR SOUTHERLY SEDIMENT TRANSPORT 

Evidence for southerly sediment transport along the west- 
ern margin of the Cretaceous Interior seaway has been ob- 
tained by numerous field studies of nearshore marine units. 
Table 1 summarizes units described in the literature that 
contain paleoflow indicators and were deposited in the west- 
ern half of the seaway during the Cretaceous, when the 
seaway was through-going. 

The majority record southerly directed paleoflows. Where 
the indicators are cross-strata of dunes, it seems reasonable 
that the net sediment transport direction also was southerly. 
Quite remarkably, all depositional environments sampled, 
whether the foreshore, shoreface, shelf, or incised estuarine 
valleys, show this southerly transport. Even estuarine val- 
ley-fills cut at low-stand—such as suggested for the Shan- 
non, the Tocito, the Sego sandstones—all contain south- 
directed paleoflow indicators. Why rivers feeding a roughly 
north-south shoreline should have turned south, parallel- 
ing the shore as they extended seaward during low-stand 
remains a puzzle. Jennette et al. (1995) call upon tectonic 
control, but the evidence is circumstantial. Here we propose 
that the rivers inherited a shelf bathymetry of southerly 
recurved, subaqueous spits and shoals created by deflection 
of delta plumes athighstand. Therefore, as sea level fell, the 
rivers were steered south to debouch on local east-west 
trending shorelines. 

CONCLUSIONS 

Our modeling results indicate that net sediment transport 
along the western margin of the seaway—whether in off- 
shore sand ridges, incised estuarine valley fills, or incised 
shoreface deposits—would have been to the south. This 
occurred because the mean annual wind field, latitudinal 
temperature gradient, and fresh water runoff from land 
created a background circulation consisting of southerly 
geostrophic flow on the western shelf. In addition, counter- 
clockwise-rotating, mid-latitude cyclonic storms passing 
southeastward over the central seaway drive a net southerly 
littoral drift in the foreshore and shore-parallel geostrophic 
flows whose net suspended load transport is southerly. Fi- 
nally, one can conjecture that in response to these mean and 
event-generated southerly flows, sediment plumes at river 
mouths constructed submarine topographies at highstand 
that recurved southward. When sea level fell, river courses 
may have been steered by this subtle topography to incise 
shore-parallel or oblique valleys filled with southerly di- 
rected, estuarine valley-fill sandbodies 
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Pig. 6.—Net direction and magnitude of transport of suspended load (kg/m/s) during the eight days of the storm. Values reflect 
integration of sediment concentration over the lower 10 m of the water column times wind-driven current speed in lowest 
layer of POM expressed as kg per unit width per unit time. 
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Table 1.—Paleocurrent data from nearshore marine sandbodies along the western margin of the Cretaceous Western Interior 
seaway. 

Unit 

1. Tocito Ss.; northwestern 
New Mexico (Van 
Wagoner, et al., 1991) 

2. Kenilworth Mbr., 
Blackhawk Fm.; Book 
Cliffs, Utah (Taylor and 
Lovell, 1995)  

3. Shannon Ss., east-central 
Wyoming (Tillman and 
Martinsen, 1984)     

4. Dunvegan Fm.; 
northwestern Alberta 
(Bhattacharya and 
Walker, 1991)  

5. Burnstick Mbr., Cardium 
Fm.; Alberta (Pattison and 
Walker, 1992)  

6. Virgelle Mbr, Eagle Fm.; 
Bighorn Basin, Wyoming 
(Fitzsimmons, 1995)  

7. Baytree Mbr., Cardium 
Fm.; northwestern Alberta 
(Hart and Plint, 1989) 

8. Rusty Mbr., Ericson Ss.; 
SW Wyoming (Martinsen 
et al., 1997)  

9. Duffy Mtn. Ss., Mancos 
Shale; Northwestern 
Colorado (Boyles and 
Scott, 1982)  

10. Eagle Ss.; north-central 
Montana (Rice, 1980) 

11. Gallop Ss.; northwestern 
New Mexico (Campbell, 
1971)  

12. Ferron Ss.; Castle Valley, 
Utah (Cotter, 1975) 

13. Hygiene Ss.; northern 
Colorado (Kitely and 
Field, 1984) 

Age Depositional Environments and Paleocurrent Data 

Coniacian       Transgressive shelf sand ridge or incised estuarine valley: offshore 
unimodal large-scale cross-strata dip to SE; large wave-ripple crests 
trend NW-SE; shore parallel sediment transport to the SE on a 
transgressive restricted shelf or SE transport in a shore-parallel 

 estuary  

Campanian      Upper shoreface: "Trough cross-bed orientations...in the upper 
shoreface deposits...have a dominant southerly component and suggest 
that there were strong shore-parallel currents." 

*.. 

Campanian 

Cenomanian 

Shelf ridge complex: "Transport directions determined from high-angle 
cross-beds indicate a southwest transport direction." 

Barrier bar: "A major distributary channel probably fed this barrier 
bar at its northeastern end and sand was transported to the 
southwest by longshore drift." 

Turonian        Incised shoreface: "We interpret the alongstrike trends as the result of 
... southwestward sediment transport in the shoreface." 

Campanian      Incised estuarine valley: bipolar N-S dipping trough cross-strata fill a 
N-S trending, shore parallel, incised valley 

Turonian        Shoreface: "The dominant southeast (i.e. shore-parallel) cross- 
bedding, in both sandstones and conglomerates indicates a strong 
longshore component to sediment transport." 

Campanian      Valley-fill sandstones: "In contrast to surrounding delta plain 
sediments, where paleoflow was to the ESE, the paleocurrents within 
valley-fill sandstones are directed to the SSW."  

Campanian      Shore-parallel shelf bars: " The sediment was probably derived 
from....southwestern Wyoming." 

Upper Delta-front: "The sand was probably deposited as river-mouth bars 
Cretaceous       that were redistributed by dominately southward-flowing marine 

longshore currents..."   

Upper Elongate, shore-parallel, northwest-southeast trending, offshore bar: 
Cretaceous       Cross-laminae dip to the southeast. 

Upper Low energy coast: "Sediment....was derived from the large Vernal 
Cretaceous       Delta, located north and west of the Castle Valley outcrops, and was 
 transported generally southwestward, parallel with the coast." 

Late Mid-outer shelf sand ridges: "The sand was derived from the west, 
Campanian      transported eastward, and then redistributed by southward-flowing 

storm and oceanic currents." 
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